1-800-987-654 info@trouvus.com Trouvus Dashboard
Content Analysis

A Novel Approach Based on Multi-View Content Analysis and SemiSupervised Enrichment for Movie Recommendation

Although many existing movie recommender systems have investigated recommendation based on information such as clicks and tags, much less efforts have been made to explore the multimedia content of movies, which has potential information for the elicitation of the user’s visual and musical preferences. In this paper, we explore the content from three media types (image, text, audio) and propose a novel multi-view semi-supervised movie recommendation method, which represents each media type as a view space for movies. The three views of movies are integrated to predict the rating values under the multi-view framework. Furthermore, our method considers the casual users who rate limited movies. The algorithm enriches the user profile with a semi-supervised way when there are only few rating histories. Experiments indicate that the multimedia content analysis reveals the user’s profile in a more comprehensive way. Different media types can be a complement to each other for movie recommendation. And the experimental results validate that our semi-supervised method can effectively enrich the user profile for recommendation with limited rating history.

By: Wen Qu, Kai-Song Song, Yi-Fei Zhang, Shi Feng, Da-Ling Wang, and Ge Yu

View the full PDF here

This Post Has 2 Comments

  1. eebest8 michael

    “Hello there. I discovered your blog by means of Google while searching for a comparable subject, your web site got here up. It appears to be good. I have bookmarked it in my google bookmarks to come back then.”

  2. jenna haze

    Major thanks for the blog. Fantastic.

Leave a Reply

Your email address will not be published. Required fields are marked *